Characterization of mesoridazine transport in human cerebral microvessel endothelial cells, hCMEC/D3

All right reserved.

Yasuyuki Debori¹, Tomoko Igari¹, Masanori Nakakariya¹, Nobuyuki Amano², Yuma Tega¹, Kei Higuchi ${ }^{1}$, Takashi Okura ${ }^{1}$ and Yoshiharu Deguchi ${ }^{1}$

Drug Discavery Partners

1.Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University 2.Drug Disposition and Analysis, Research Division, Axcelead Drug Discovery Partners, Inc.

Purpose

Mesoridazine is a cationic drug and known to be distributed to brain ($K_{p, u u}=0.4$ in human) despite a substrate of MDR1. This suggests that some uptake transporters would be involved in the brain uptake process of mesoridazine in human.

In present study, we focused on the uptake process of mesoridazine into brain and aimed to characterize the mesoridazine transport using human cerebral microvessel endothelial cell line, hCMEC/D3 cells.

Fig. 1 Time profile of mesoridazine ($1 \mu \mathrm{M}$) uptake by hCMEC/D3 cells
Uptake of mesoridazine in hCMEC/D3 cells was observed in time- and temperature-dependent manner. This result indicated that carriermediated transport mechanism was involved in the uptake of mesoridazine in hCMEC/D3 cells.

Uptake of mesoridazine $(1 \mu \mathrm{M})$ was determined in the absence and presence of each inhibitor (1 mM) at $37^{\circ} \mathrm{C}$.
Mean \pm S.D. ($n=3$)
*p < 0.05; ** p < 0.01;
*** $p<0.001$ us control

Fig. 3 Inhibitory effect of various compounds on mesoridazine uptake by hCMEC/D3 cells
The uptake of mesoridazine was significantly inhibited by typical cationic compounds, but not significantly inhibited by carnitine (a substrate and inhibitor of OCTN2), TEA and MPP ${ }^{+}$(typical substrate and/or inhibitor of OCTs), or rifampicin (a typical inhibitor of OATPs). This result suggests that transporter(s) different from the known cation transporters are involved in the uptake of mesoridazine in hCMEC/D3 cells.

Materials and Methods

Mesoridazine uptake into hCMEC/D3 cells was measured under various conditions to evaluate the time-, temperature-, concentration-, energy- and ion-dependencies. Inhibition study was also performed with selected organic cations. Mesoridazine was quantified by LC-MS/MS system, Nexera XR (Shimadzu) and TQ4500 (Sciex). Multiple reaction monitoring transition was observed at Q1/Q3 387.16/126.1 for mesoridazine.

Fig. 2 Concentration-dependent uptake of mesoridazine by hCMEC/D3 cells
The concentration dependence of the uptake of mesoridazine can be explained by one saturable and one non-saturable component in hCMEC/D3, with $K_{m}, V_{\text {max }}$, and $P_{\text {dif }}$ values of $38.9 \mu \mathrm{M}, 24.4 \mathrm{nmol} / \mathrm{min} / \mathrm{mg}$ protein, and $63.9 \mu \mathrm{~L} / \mathrm{min} / \mathrm{mg}$ protein, respectively.

Uptake of mesoridazine ($1 \mu \mathrm{M}$) was determined in the absence and presence of $10 \mu \mathrm{M}$ FCCP, choline Cl , and KCl at $37^{\circ} \mathrm{C}$ Na^{+}in transport buffer was replaced with choline and potassium to induce loss of Na^{+}-gradient and membrane potential, respectively
Mean \pm S.D. ($\mathrm{n}=3$)

* $p<0.05$ vs control

Fig. 4 Effects of proton gradient, extracellular Na^{+}, and membrane potential on mesoridazine uptake by hCMEC/D3 cells
Mesoridazine uptake was moderately decreased by FCCP, a protonophore, but not by replacement of extracellular sodium ion with choline and potassium, suggesting that \mathbf{H}^{+}-dependent, $\mathbf{N a}^{+}$-independent, and membrane potential-independent transporter, is involved in the uptake of mesoridazine.

Fig. 5 Effects of metabolic inhibitors on mesoridazine uptake by hCMEC/D3 cells

The uptake of mesoridazine was inhibited by 50% by pretreatment with sodium azide. These results suggest that the uptake process of mesoridazine is energy-dependent.

Fig. 6 Effects of intracellular (A) and extracellular (B) pH on mesoridazine uptake by hCMEC/D3 cells
(A) In condition of $\mathrm{NH}_{4} \mathrm{Cl}$ load, uptake of mesoridazine $(1 \mu \mathrm{M})$ was determined in the absence (control) and presence of $30 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{Cl}$ at $37^{\circ} \mathrm{C}$ and pH 7.4 to increase intracellular $\mathrm{pH}\left(\mathrm{pH}_{\mathrm{i}}\right)$. In condition of $\mathrm{NH}_{4} \mathrm{Cl}$ preload, CMEC/D3 cells was preincubated with 30 mM $\mathrm{NH}_{4} \mathrm{Cl}$ for 20 min at $37^{\circ} \mathrm{C}$ and subsequently replaced with $\begin{array}{lll}\mathrm{H}_{4} \mathrm{C} \text {-free } & \text { buffer to } \\ \text { decrease } \mathrm{pH}_{\text {l }} \text {. (B) Uptake of }\end{array}$ decrease pH_{i}. (B) Uptake of nesoridazine ($1 \mu \mathrm{M}$) was values of $6.4,7.4$, and 8.4 . Mean \pm S.D. ($n=3$) * $p<0.05$ vs control
$\mathrm{NH}_{4} \mathrm{Cl}$ load ($\mathrm{pH}_{\mathbf{i}}: \uparrow$) reduced significantly mesoridazine uptake. In contrast, no significant changes in mesoridazine uptake were observed by $\mathrm{NH}_{4} \mathrm{Cl}$ preload $\left(\mathrm{pH}_{;} ; \downarrow\right)$. This unexpected characteristic was supported by the result that mesoridazine uptake showed no significant difference between extracellular pHs of 7.4 and 8.4 , suggesting existence of pH -insensitive uptake mechanism in alkaline pH range ($>\mathrm{pH} 7.4$).

Conclusion

The present study suggested that not only proton-coupled organic cation antiporter similar to the pyrilamine transporter, but also other transport system may be involved in the uptake process of mesoridazine into hCMEC/D3 cells.

