

# Axcelead DDP and FUJIFILM Cellular Dynamics, Inc. support your drug discovery using iCell® Products

iPSC-derived cell types are useful physiologically relevant models of human diseases. Recently, compounds discovered in phenotypic screening using iPSC-derived cells have been shown to be effective in clinical trials, thus making the use of iPSC-derived cells for drug screening an attractive approach.

Axcelead DDP supports your drug discovery from assay development through high-throughput screening using iPSC-derived cells from FUJIFILM Cellular Dynamics, Inc. (FCDI), a leading company of iPSC technologies.



# **Axcelead DDP Phenotypic Screening Services**

Utilizing the scientific experiences of Axcelead DDP and FCDI, we offer a wide selection of phenotypic screening services incorporating iCell<sup>®</sup>Products.



# Our capabilities support you throughout your screening process:

- •We can lead your drug discovery efforts using FCDI's iPSC technology and a wide range of screening experiences of Axcelead DDP.
- •We can propose the best screening strategies according to your needs from assay development to HTS execution.
- •Our vast library of pharma origin with high quality and diverse structures increases your chances in finding hit compounds.



# Screening for Phagocytosis Modulators using iCell<sup>®</sup> Microglia AD TREM2

## Goal

To discover phagocytosis activators using iCell® Microglia AD TREM2 homozygous knockout (iCell Microglia TREM2 HO) cells.

# Background

Mutations in the transmembrane protein, TREM2, has become a research focus because of its role in the binding and clearance of Aβ oligomers, thus making it a potential risk factor of Alzheimer's disease. Elucidation of the mechanism would be useful for development of therapies for Alzheimer's disease.

## Assay Development

A biologically annotated compound library, consisting of about 3,400 compounds, was tested in a phagocytosis assay using iCell Microglia TREM2 HO to screen for phagocytosis activators. Compound concentration for the primary screening was set at 3 μM.

# Assay flow



# Biologically annotated compound library

Compound library consisting of small molecules with diverse biological and pharmacological activities.



## **Assay Development Results**

We optimized an assay to evaluate cellular uptake activity of fluorescent-labeled A $\beta$  in a 384-well format using InCuCyte<sup>®</sup> ZOOM. Results showed A $\beta$  uptake kinetics in iCell Microglia TREM2 HO was slower than that of iCell Microglia (wild type, WT).



## Evaluation of Aβ uptake activity using iCell<sup>®</sup> Microglia AD TREM2 HO

## Screening Cascade Outline

#### Primary screening (c.a. 3400compounds)

- ▶ Biologically annotated compounds, > 3400 cpds
- ►3 µM, N=1
- ►TREM2 mutant
- ▶ Phagocytosis assay and cytotoxicity (CellTiter-Glo<sup>®</sup> Luminescent Cell Viability Assay)

#### **Reproducibility test (350 compounds)**

- ▶ Positive compounds from primary screening
- ►3 µM, N=1
- ►TREM2 mutant
- ▶ Phagocytosis assay and cytotoxicity (CellTiter-Glo® Luminescent Cell Viability Assay)

#### Dose response test (24 compounds)

- Selected compounds from reproducibility test
- ▶6 dose, N=2
- ► TREM2 mutant and WT
- ▶ Phagocytosis assay and cytotoxicity (CellTiter-Glo<sup>®</sup> Luminescent Cell Viability Assay)

#### Hit compounds

## **Primary Screen Results**

After the primary screening step, false-positive compounds (e.g.Auto-fluorescence, cell toxicity) were removed. Based on the activity distribution from the primary screening, positive compounds were selected for a following screening cascade, reproducibility assay and concentration-response assay.



#### **Dose Response Results**

We successfully identified several phagocytosis activators. These compounds enhanced phagocytosis activity without severe cytotoxicity.

Representative compounds, A and B, increased the phagocytosis activity in iCell Microglia TREM2 HO comparable to levels of iCell Microglia. Compound A enhanced phagocytosis activity in both iCell Microglia and iCell Microglia TREM2 HO, while compound B increased it only in iCell Microglia TREM2 HO, suggesting that these compounds modulated phagocytosis activity through different mode-of-actions.



#### Images and graphs for representative hit compounds

# A Variety of Assays and Experiences in Phenotypic Screening

Our vast experience in phenotypic screening combined with our diverse compound libraries provides high-quality phenotypic screening services.



# **Track Record**

Assay methods used for  $\sim$ 70 phenotypic Assay method Typical size of library screens at Axcelead DDP Imaging 100K compounds **Reporter gene assay** - 400K compounds others 17% **Cell growth** - 400K compounds Imaging TR-FRE 30% 5 qRT-PCR 30 K compounds qPCR . 8% **TR-FRET** 100K compounds Cell growth **ELISA** 100K compounds 12% Reporter 28% **POI-HiBit screening** 100K compounds (for degrader screening)

# **Target Deconvolution**

Axcelead's researchers from various fields collaborate to provide a one-stop solution, including target deconvolution.





Axcelead Drug Discovery Partners, Inc.

26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa 251-0012, Japan www.axcelead.com contact@axcelead.com