AXCELEAD Characterization of membrane protein using mass spectrometrybased technologies - affinity selection-mass spectrometry (AS-MS)

Hideyuki Oki, Takamitsu Maru, Sachio Shibata, Yumi Zama, Masanori Miwa
Axcelead Drug Discovery Partners, Inc.

All rights reserved.

Abstract

Affinity Selection-Mass Spectrometry (AS-MS) is an emerging technology in drug discovery. In practice, its primary focus is on discovering binders for target molecules. As reported publicly, AS-MS is employed for hit finding in high-throughput screening campaigns for various target molecules, ranging binder exploration of functionally challenging target molecules, such as binder exploration of functionally challenging target molecules, such as membrane proteins, RNA, and . Even membrane proteins can be utilized in AS-MS technology, along with soluble target molecules. However, in many cases, proper sample preparation is necessary for membrane proteins, wh folding in this poster presentation, me detergents to main using membrane fractions or microsome as protein material, is useful using membrane fractions or ming for evaluating binding affinity but also for profiling the not only for evaluating binding atfins and structure determination of membrane protein complex with inhibitor.
Method

Case 1
Characterization of membrane protein enzyme and inhibitors: GCS inhibitors ${ }^{1,2}$

Glucosylceramide synthase (GCS) is a membrane protein enzyme which catalyzes glucosylceramide (GlcCer) synthesis from ceramide (Cer) and uridine diphosphate-glucose (UDP-glucose). This enzyme involved in lysosomal storage disorders, such as Gaucher's disease (GD).

Eliglustat
Fig. 2 GCS inhibitors used for characterization

Fig. 3. Kinetic analysis by Lineweaver-Burk plots.
T-036 showed a noncompetitive manner in inhibitory activity of enzyme (left). Meanwhile, eliglustat showed an uncompetitive inhibition manner (right).

Fig. 4. Binding analysis by AS-MS using membrane fractions. T-036 bound to the enzyme without affecting UDP-glucose binding as the substrate molecule (left). Meanwhile, eliglustat bound to the enzyme only in the presence of UDP-glucose (right).

Fig. 1. Workflow of $K_{\underline{D}}$ determination by AS-MS with MRM* mode
Appropriate resin and centrifugation conditions for B/F separation can deal with even membrane fractions. *Multiple reaction monitoring. **Agilent technologies, Inc.

Case 2
Structure determination of hERG/Astemizol complex by Cryo-EM ${ }^{3,4}$
For membrane protein structure determination in complex with compounds, it's important to know the binding affinity of compound before and after purification of membrane protein. In addition, K_{D} values are helpful to set an appropriate compound concentration of cryo-EM sample.

$K_{\text {D: }} 1.4 \pm 0.29 \mathrm{nM}$ for membrane fractions

Input concentration
of Astemizole (nMm
(n) for purified hERG

Fig. 6. Binding analysis of astemizole to $\mathrm{hERG}_{\mathrm{T}}{ }^{*}$ by $\mathrm{AS}-\mathrm{MS}$.
K_{D} values of astemizole were determined for $h E R G_{T}$ embedded in a cell membrane (A) and $h E R G_{T}$ purified in LMNG micelles (B). Specific binding signals (red triangles) were calculated by subtracting nonspecific binding signals (solid square), conducted without $\mathrm{hERG}_{\mathrm{T}}$, from the total binding signals (solid circles). The results are shown as the mean \pm standard error in triplicate. ${ }^{\text {hERG }}{ }_{T}$ was truncated from residues 141-350 and 871-1005, prepared for structure determination.

Fig. 7. Complex structure of hERG and astemizole complex. The cryo-EM structure of hERG in complex with astemizole was determined to resolution of $2.7 \AA$. The key residues involved in astemizole (purple) binding are shown as grey sticks.
Claudio Catalano et al., COMPPa 2022, Nanolmaging Services

References

1. Fujii, Takahiro et al. Journal of neurochemistry 159,3 (2021): 543-553.
2. Tanaka, Yuta et al., Journal of medicinal chemistry. 65,5 (2022): 4270-4290.
3. Asai, T. et al. Structure 29(3), (2021): 203-212
4. Claudio Catalano et al., the 2nd COMPPA meeting, held in New York, NY in June 2022
